Optimizing Recellularization of Whole Decellularized Heart Extracellular Matrix

نویسندگان

  • Matthew J. Robertson
  • Jessica L. Dries-Devlin
  • Stefan M. Kren
  • Jana S. Burchfield
  • Doris A. Taylor
چکیده

RATIONALE Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. However, after transplantation, these acellular vascular conduits clot, even with anti-coagulation. Here, our objective was to create a less thrombogenic scaffold and improve recellularized-left ventricular contractility by re-lining vascular conduits of a decellularized rat heart with rat aortic endothelial cells (RAECs). METHODS AND RESULTS We used three strategies to recellularize perfusion-decellularized rat heart vasculature with RAECs: retrograde aortic infusion, brachiocephalic artery (BA) infusion, or a combination of inferior vena cava (IVC) plus BA infusion. The re-endothelialized scaffolds were maintained under vascular flow in vitro for 7 days, and then cell morphology, location, and viability were examined. Thrombogenicity of the scaffold was assessed in vitro and in vivo. Both BA and IVC+BA cell delivery resulted in a whole heart distribution of RAECs that proliferated, retained an endothelial phenotype, and expressed endothelial nitric oxide synthase and von Willebrand factor. Infusing RAECs via the combination IVC+BA method increased scaffold cellularity and the number of vessels that were lined with endothelial cells; re-endothelialization by using BA or IVC+BA cell delivery significantly reduced in vitro thrombogenicity. In vivo, both acellular and re-endothelialized scaffolds recruited non-immune host cells into the organ parenchyma and vasculature. Finally, re-endothelialization before recellularization of the left ventricular wall with neonatal cardiac cells enhanced construct contractility. CONCLUSIONS This is the first study to re-endothelialize whole decellularized hearts throughout both arterial and venous beds and cavities by using arterial and venous delivery. The combination (IVC+BA) delivery strategy results in enhanced scaffold vessel re-endothelialization compared to single-route strategies. Re-endothelialization reduced scaffold thrombogencity and improved contractility of left ventricular-recellularized constructs. Thus, vessel and cavity re-endothelialization creates superior vascularized scaffolds for use in whole-organ recellularization applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impedimetric Analysis of the Effect of Decellularized Porcine Heart Scaffold on Human Fibrosarcoma, Endothelial, and Cardiomyocyte Cell Lines

BACKGROUND Experiments on porcine heart scaffold represent significant assays in development of immunoneutral materials for cardiac surgery. Characterization of cell-cell and cell-scaffold interactions is essential to understand the homing process of cardiac cells into the scaffolds. MATERIAL AND METHODS In the present study, the highly sensitive and real-time impedimetric technique of xCELLige...

متن کامل

Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract

Current research on valvular heart repair has focused on tissue-engineered heart valves (TEHV) because of its potential to grow similarly to native heart valves. Decellularized xenografts are a promising solution; however, host recellularization remains challenging. In this study, decellularized porcine aortic valves were implanted into the right ventricular outflow tract (RVOT) of sheep to inv...

متن کامل

Recellularization of Decellularized Lung Scaffolds Is Enhanced by Dynamic Suspension Culture

Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to sta...

متن کامل

Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells.

Tissue engineering strategies, based on solid/porous scaffolds, suffer from several limitations, such as ineffective vascularization, poor cell distribution and organization within scaffold, in addition to low final cell density, among others. Therefore, the search for other tissue engineering approaches constitutes an active area of investigation. Decellularized matrices (DM) present major adv...

متن کامل

Decellularized tissue-engineered heart valve leaflets with recellularization potential.

Tissue-engineered heart valves (TEHV) have been proposed as a promising solution for the clinical needs of pediatric patients. In vivo studies have shown TEHV leaflet contraction and regurgitation after several months of implantation. This has been attributed to contractile cells utilized to produce the extracellular matrix (ECM) during TEHV culture. Here, we utilized such cells to develop a ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014